PyToPseu: Automatic Natural-Language
Formulations of Programming Constructs to
Avoid Misconceptions

Jean—Philippe Peuet[00()07()001775597397X] and
Patrick Wang[0000700037311778189]

University of Teacher Education, Lausanne, Switzerland
{jean-philippe.pellet,patrick.wang}@hepl.ch

Abstract. Introduction to programming remains one of the first deli-
cate topics in computer science education. In this poster proposal, we
describe our efforts to equip beginners with a tool which, from Python
code, generates a line-by-line natural-language description of the code.
This tool is designed to help students understand programming con-
structs and avoid common misconceptions. The tool is not based on
LLMs, but aims to stay very close to the actual code and is based on
a set of rules that map Python constructs to their natural-language in-
terpretations. We believe that this approach can enhance the learning
experience for beginners, especially those who may struggle with under-
standing the syntax and semantics of basic programming constructs.

Keywords: programming education - misconceptions - Python.

1 Introduction & Context

In recent years, computer science courses have become increasingly popular
in schools and universities. Programming is part of the main topics in these
courses. Even with the rise of LLMs, learning basic programming concepts re-
mains essential—whether one believes that LLMs should be involved in program-
ming courses or not. Indeed, in order to be able to evaluate and use adequately
code produced by LLMs, understanding the basic concepts of programming is
still crucial.

However, many students struggle with programming concepts, and are sub-
ject to recurring misconceptions [I]. Misconceptions can be syntactical or seman-
tical, and can depend on the programming language used; but misconceptions
common to whole families of programming languages also exist.

In our context of introductory programming courses in tertiary education,
where the curriculum dictates the use of a textual programming language, it
is quite common to use Python as the first language. Python has often-cited
advantages, such as its readability and simplicity, which make it a popular choice
for beginners. Certain teachers skip pseudocode altogether, arguing that Python,
most of the time, is close enough to pseudocode to be used directly without loss
of readability and with the advantages of lack of ambiguity and executability.

2 J.-P. Pellet & P. Wang

But even with these advantages, we have found out time and again that cer-
tain constructs remain systematically problematic for students to use correctly.
We found that reading out loud typical faulty code from students, insisting on
its semantics by reformulating it in more natural language, helped students find
out why it was faulty. This led us to the idea of creating a tool that would auto-
matically generate such natural-language descriptions of Python code, in order
to help students understand programming constructs and avoid misconceptions.

Our tool, PyToPseu, automatically generates natural-language descriptions
of Python code. PyToPseu is work in progress and, at the time of writing, no
systematic data collection or evaluation has been done yet, but the tool is already
available onlindﬂ and is being developed as an open-source projectE| with feedback
from select students and teachers. We would be looking forward to more feedback
from the community based on the poster and the tool itself.

2 Natural-Language Descriptions of Python Code

PyToPseu takes Python code as input and generates a natural-language de-
scription of the code. In its current form, it comes in the form of an online
code editor (based on COdeMiI‘I‘OIE[) where users can write Python code, to-
gether with syntax highlighting and autocompletion. The tool then generates a
natural-language description of the code, line by line, which is inserted directly
in the code as comments in a non-obstrusive and nicely formatted way. (Cur-
rently, the tool produces comments in French, but we would add English support
if there is interest in the community.)

Code | Interprétation
words = ["i", "love", "programming"] dans words, stocke une liste avec les éléments "i", "love" et "programming"
total = 0 dans total, stocke @

for i, word in enumerate(words): pour chaque élément de words
(qu'on va appeler word et numéroter i depuis 0):
affiche i et word

ajoute la longueur de word a total

print(i, word)
total += len(word)

HHEEHHEH TR

print(f“Total length: {total}") affiche 1'expansion de 'Total length: {total}'

Fig. 1. Screenshot of PyToPseu, showing the code editor with a Python

At its core, the tool calls Python’s parser to create an abstract syntax tree
(AST) of the code, and then traverses this AST to generate a natural-language

! https://jp.pellet.name/hep/pytopseu/
2 https://github.com/jppellet/PyToPseu
3 https://codemirror.net/

https://jp.pellet.name/hep/pytopseu/
https://github.com/jppellet/PyToPseu
https://codemirror.net/

Automatic Natural-Language Formulations of Programming Constructs 3

description of each constructﬁ In order to make the output natural, it is actu-
ally more involved than a straightforward translation of the AST. Some special
cases are handled differently to make the output sound more natural, and some
constructs are handled differently depending on their context (see below for ex-
amples).

PyToPseu is aimed at beginners: its use with more complex constructs such
as Python decorators, metaprogramming, or more advanced object-oriented pro-
gramming in not where its focus lies. The resulting explanations there are less
likely to shed light on what is actually going on, since the semantics of the code
should, at a certain stage, be understood at a different level and cannot readily
be explained line by line. Referring to Schulte’s block model [2], PyToPseu is on
the “Function/Atom level”. As such, we actually rather view it as a tool to help
production of code rather than a tool for whole-program comprehension [3].

Here is a non-exhaustive list of the misconceptions or “recurringly problem-
atic constructs” that PyToPseu aims to help students with:

— Assignment. We disambiguate the fundamentally asymmetric nature of the
= operator. a = 5 is translated as “in a, store 5”. Type annotation are sup-
ported, such that a: int = "code" is translated as “in a, meant for an whole
number, store the string "code"”, which strongly hints at the type mismatch
without explicitly stating it. Augmented assignment operators such as += are
translated more specifically; regular assignments of the form a = a + x are
treated as augmented assignments.

— We handle subscripts for strings, lists, and dictionaries differently, when the
type information permits, such that a[i] is translated as “element number
i of a” for lists, “character i of a” for strings, and “the value associated
with the key i in a” for dictionaries, which improves the readability.

— Comparison operations are translated as expected in an if /while state-
ment; for instance, if a == 4 is translated as “if a is equal to 4”. However,
assignement of thusly produced boolean values to variables is frequently seen
as problematic, so we translate cond = a == 4 as “in cond, store true/false
according to whether a is equal to 4”. Similary, if cond is translated as “if
cond is true”—students are often confused by the lack of operator.

— Loops undergo special treatment because of the common confusion between
iterating on indices or on elements, or both with enumerate. Here are some
of the special cases that are treated separately:

e for i in range(x) is translated as “repeat x times, counting with i”,
but for i in range(a, b) is translated as “repeat for each item in the
range from a to b, which we’ll call i”.

e for i in range(len(a)) is translated as “repeat as often as there are
elements in a, counting with i”. This insists that a must be some con-
tainer and that i is a index.

e for elem in a is translated as “repeat for each element of a, which
we’ll call elem”. This insists that a must be some container and that
elem is actually one of its elements.

4 This unfortunately means that syntactically incorrect code cannot be processed.

4 J.-P. Pellet & P. Wang

e for i, elem in enumerate(a) is translated as “repeat for each ele-
ment of a, which we’ll call elem and number with i”.

— Common functions such as sqrt, round, abs, etc. are translated, as well
as methods on common data types such as str (endswith, strip, etc.) and
list (append, insert, clear, etc.), Lone expressions that are neither stored
nor used later show up as such. For instance, a line whose total content is
math.sqrt(4) is translated as “the square root of 4”. Reading just this,
without a print or store instruction, helps indicate that this line does not do
anything useful in the program.

— In general, statements that are expected to return None are translated
with a verb of action (e.g, “print”, “send”, “wait”), whereas expressions are
substantives (e.g., “the square root of 4”7, “the sum of the elements of a”). Of
course, this is just a heuristic: complex functions may both compute a value
and have side effects, for instance, and we have no easy way to determine
that from the AST.

One could argue that LLMs, given a faulty program, can produce a natural-
language description of the code and suggest improvements as well. However, we
precisely believe that an LLM is too capable to be used as a tool for beginners
and will lead them to simply skip the understanding of the code. PyToPseu,
on the other hand, is designed to stay very close to the actual code and to
help students understand the constructs they are using, rather than providing a
black-box solution that may not be fully understood.

3 Outlook

We are currently working on extending PyToPseu to support more constructs,
but our main focus is on the modalities of use in the classroom or during exercise
sessions. Our students use Visual Studio Code and one way to integrate our tool
would be to create a VS Code extension that annotate code on demand. Of
course, feedback from students and peers and structured evaluation of the tool
will be crucial to improve it.

References

1. Chiodini, L., Moreno Santos, I., Gallidabino, A., Tafliovich, A., Santos, A.L.,
Hauswirth, M.: A curated inventory of programming language misconceptions. In:
Proceedings of the 26th ACM Conference on Innovation and Technology in Com-
puter Science Education V. 1. pp. 380386 (2021)

2. Schulte, C.: Block model: an educational model of program comprehension as a tool
for a scholarly approach to teaching. In: Proceedings of the fourth international
workshop on computing education research. pp. 149-160 (2008)

3. Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., Paterson, J.H.: An introduction
to program comprehension for computer science educators. Proceedings of the 2010
ITiCSE working group reports pp. 65-86 (2010)

	PyToPseu: Automatic Natural-Language Formulations of Programming Constructs to Avoid Misconceptions

