PyToPseu: Automatic Natural-Language Formulations
of Programming Gonstructs to Avoid Misconceptions

hep/

‘;Mgh? Jean-Philippe Pellet and @ Patrick Wang

University of Teacher Education, Lausanne, Switzerland
jean-philippe.pellet@hepl.ch ™) " patrick.wang@hepl.ch

ISSEP 2025
September 8-11
Trier, Germany

Introduction & Context

Introduction to programming remains one of the first delicate topics in computer science education. We
present a tool which, from Python code, generates a line-by-line natural-language description of the code.

Its intended use is first and foremost a reading and interpretation tool for existing code, but it can be
used to verify the meaning of code being written as well.

Prevent common mistakes

Because they always pop up and
we know them well by now

Runs locally or in browser

4—'\

No server, can do without internet
connection

Not too powerful to replace
students’ thinking processes

Work in Progress as of Summer 2025!

Works on the AST

... SO, syntactically invalid code cannot
get processed

Can be integrated in VS Code

4——‘\

Because output is in the form of Python
comments “nicely” formatted

Example Outputs

Assignments

Insist on asymmetry of =

Interpret type hints
Clarify : vs =

= side * side

+= 2 Desugar op= syntax, make it look like a normal reassignment

= side + 2 Use vocabulary to clarify that a variable is being updated

Interpret common
function names

val = math.sqrt(area)
length = len(text)

For Loops

n=280
for i in range(5):
n += i

Use “repeat” and interpret the part after in
Insist that we are counting from 0

ng =0
for ¢ in text:
if ¢ = "g":
ng += 1

Basic for-each with container
Explanation for loop var

ng =0

Interpret the
for i in range(len(text)): P

common
. - range(len(...))
if text[i] = "g": construct

ng += 1

for i, c in enumerate(text): Interpret

: cn £ £ Ln enumerate
print(f"at pos {i}, we have {c}")

for ¢ in len(text):
print(c)

Try to make wrong constructs sound wrong

Functions

def add_abs(x, y) — int:

return abs(x) + abs(y)

def b(x, y, z) = int:

return x + 1

Spell out function, arguments, return type
Insist that return terminates the function

[1] Chiodini, L., Moreno Santos, I., Gallidabino, A., Tafliovich, A., Santos, A.L., Hauswirth, M.: A curated inventory of programming language misconceptions. In: Proceedings of the 26th ACM Conference on Innovation and Technology

in Computer Science Education V. 1. pp. 380-386 (2021)
References

[2] Qian, Y., Lehman, J.: Students’ misconceptions and other difficulties in introductory programming: A literature review. In: ACM Transactions on Computing Education (TOCE) 18(1), 1-24 (2017) ]
[3] Schulte, C.: Block model: an educational model of program comprehension as a tool for a scholarly approach to teaching. In: Proceedings of the fourth international workshop on computing education research. pp. 149-160 (2008) [3] Introduction of the block model and the various levels of understanding of a program
[4] Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., Paterson, J.H.: An introduction to program comprehension for computer science educators. In: Proceedings of the 2010 ITiCSE working group reports pp. 65-86 (2010) ]

Conditions, If Statements (and while statements)

if age = 18: Provide textual versions
print("you can drive") of symbolic comparison
operators

Interpret some common conditions

1f value 1s None: with more intuitive names

print("missing")

Common values for the % operator
are explained

if len(text) ¥ 2 = 0O:

print("text has an even number of characters")
else:

print("text has an odd number of characters")

Support for
multiple
comparisons

if 0 € index < 10:

print("index is valid")

str = "programming"

Explanations for
storing booleans
in variables and
testing
conditions
without
comparison
operators

"gr" in text
text = text.upper()

if condl:
if not cond2:
print("condl && !cond2")

Lists (and tuples, sets, and dicts)

1: list[int] = []
1=1[1, 2, 3]
1l: list[list[int]] = []

List/tuple/set/
dict literals and
constructor
functions

1: int = list()

Type mismatch: this

hopefully sounds wron
1.append(42) perully g

1.extend([33, b])

12 = 1l.copy(Q)
.index(42)
.count(30)
.sort()
.reverse()

.pop()

Make a difference between methods/
functions with side effects (use a verb) and
computing a value (use a noun)

Difficult with those that do both, e.g. pop.

Lambda functions are also supported
(albeit without type annotations)

e Usefulness tests in classrooms

e [teration with students on best phrasing

e More precise phrasing with type info from mypy/pylint
e [f useful: better technical integration with IDEs

Relevance of reference in the context of this poster:
[1] List of misconceptions classified by programming language
[2] Literature review of misconceptions

[4] Comparison of models for program comprehension




