
PyToPseu: Automatic Natural-Language Formulations
of Programming Constructs to Avoid Misconceptions

Example Outputs

ISSEP 2025
September 8–11

Trier, Germany

 Jean-Philippe Pellet and Patrick Wang
University of Teacher Education, Lausanne, Switzerland
jean-philippe.pellet@hepl.ch(

✉

), patrick.wang@hepl.ch

Introduction to programming remains one of the first delicate topics in computer science education. We
present a tool which, from Python code, generates a line-by-line natural-language description of the code.

Its intended use is first and foremost a reading and interpretation tool for existing code, but it can be
used to verify the meaning of code being written as well.

References

Introduction & Context

Runs locally or in browser

No server, can do without internet
connection

Not an LLM

Not too powerful to replace
students’ thinking processes

Prevent common mistakes

Because they always pop up and
we know them well by now

Can be integrated in VS Code

Because output is in the form of Python
comments “nicely” formatted

Works on the AST

… so, syntactically invalid code cannot
get processed

Assignments Conditions, If Statements (and while statements)

For Loops

Lists (and tuples, sets, and dicts)

Functions

[1] Chiodini, L., Moreno Santos, I., Gallidabino, A., Tafliovich, A., Santos, A.L., Hauswirth, M.: A curated inventory of programming language misconceptions. In: Proceedings of the 26th ACM Conference on Innovation and Technology
 in Computer Science Education V. 1. pp. 380–386 (2021)
[2] Qian, Y., Lehman, J.: Students’ misconceptions and other difficulties in introductory programming: A literature review. In: ACM Transactions on Computing Education (TOCE) 18(1), 1–24 (2017)
[3] Schulte, C.: Block model: an educational model of program comprehension as a tool for a scholarly approach to teaching. In: Proceedings of the fourth international workshop on computing education research. pp. 149–160 (2008)
[4] Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., Paterson, J.H.: An introduction to program comprehension for computer science educators. In: Proceedings of the 2010 ITiCSE working group reports pp. 65–86 (2010)

Relevance of reference in the context of this poster:
[1] List of misconceptions classified by programming language
[2] Literature review of misconceptions
[3] Introduction of the block model and the various levels of understanding of a program
[4] Comparison of models for program comprehension

Work in Progress as of Summer 2025!

Future Work:
• Usefulness tests in classrooms
• Iteration with students on best phrasing
• More precise phrasing with type info from mypy/pylint
• If useful: better technical integration with IDEs

Insist on asymmetry of =
Interpret type hints
Clarify : vs =

Desugar op= syntax, make it look like a normal reassignment
Use vocabulary to clarify that a variable is being updated

Interpret common
function names

Use “repeat” and interpret the part after in
Insist that we are counting from 0

Basic for-each with container
Explanation for loop var

Interpret the
common
range(len(…))
construct

Interpret
enumerate

Try to make wrong constructs sound wrong

Spell out function, arguments, return type
Insist that return terminates the function

Lambda functions are also supported
(albeit without type annotations)

Type mismatch: this
hopefully sounds wrong

Provide textual versions
of symbolic comparison
operators

Interpret some common conditions
with more intuitive names

Common values for the % operator
are explained

Support for
multiple
comparisons

Explanations for
storing booleans
in variables and
testing
conditions
without
comparison
operators

List/tuple/set/
dict literals and
constructor
functions

Make a difference between methods/
functions with side effects (use a verb) and
computing a value (use a noun)

Difficult with those that do both, e.g. pop.

