
Novice Programming Misconceptions in Elementary

Education

Monika Mladenović1[0000-0002-5330-605X] and Žana Žanko1[0000-0002-9566-5093]

1 University of Split Faculty of Science Department of Computer Science, Split, Croatia

{monika.mladenovic, zana.zanko}@pmfst.hr

Abstract. Programming misconceptions have been studied since the 1980s, when

the first significant scientific papers on the topic emerged. Although much has

changed since then—particularly in the technology surrounding us—novice pro-

gramming misconceptions have remained largely consistent, regardless of age,

programming language, or time period. However, most existing studies have

been conducted at the university level, and there is still a lack of research focused

on younger learners. As programming becomes an increasingly integral part of

Informatics and Computer Science curricula in elementary schools, it is im-

portant to investigate misconceptions among young learners. Over the past dec-

ade, we have conducted four studies with fifth- and sixth-grade students, focusing

on misconceptions related to the text-based programming language Python and

the procedural programming paradigm. These studies were carried out in real

classroom settings, involving a total of 435 students across four school years, 25

classes, five schools, and five teachers. In this paper, we present 17 identified

programming misconceptions related to basic programming constructs: varia-

bles, sequencing, conditionals, and loops.

Keywords: Programming, Misconceptions, Programming Novices, Python, El-

ementary education, K-12.

1 Introduction

When interest in learning programming began to grow in the 1980s, scientific research

in computer science education also emerged. Some of the earliest studies on program-

ming misconceptions were conducted at the university level using languages such as

PASCAL [1] and BASIC [2], [3], [4]. Today, BASIC has been largely replaced by

Python in introductory programming courses. Although Python supports multiple par-

adigms, teaching at the elementary level typically follows the procedural paradigm,

introducing students to core algorithmic structures such as sequencing, conditionals,

and loops. These are supported by foundational programming constructs including var-

iables, if-else statements, and for or while loops.

Importantly, learning to program is not merely a matter of learning syntax or mastering

a programming language. Many misconceptions identified in earlier studies—despite

differences in age group, context, and language—continue to appear in modern

2 F. Author and S. Author

programming classrooms. This suggests that difficulties in learning to program may be

more cognitive than technical in nature.

In this paper, we present findings from four quasi-experimental longitudinal studies

conducted over a period of four school years. Our aim was to identify and analyze fre-

quent programming misconceptions among fifth- and sixth-grade (10-11 years old) stu-

dents using Python. These misconceptions span basic programming concepts such as

variables, sequencing, conditionals, and loops. We compare our findings with earlier

research and highlight the persistent nature of many misconceptions, despite significant

changes in curriculum, tools, and learner demographics.

2 Analysis of the results

Over four school years, we designed and conducted four quasi-experimental longitudi-

nal studies, each targeting programming misconceptions among novices in elementary

schools. Each study was approached from a different perspective and with different

limitations, contributing to the triangulation of the research. All studies were conducted

in authentic classroom settings, involving a total of 435 students across four school

years, 25 classes, five schools, and five teachers. These studies were conducted as part

of the second author's doctoral research, under the mentorship of the first author. Mis-

conceptions were identified by analyzing students’ test results following each study. To

differentiate random errors from actual misconceptions, we applied a threshold: mis-

conceptions were considered frequent if they appeared in 10–20% of responses, and

fairly frequent if they appeared in more than 20%.

The first study was conducted during the 2015/2016 school year, involving eight classes

and a total of 127 fifth- and sixth-grade students. We designed a test consisting of eight

tasks based on previously identified misconceptions related to variables. The study

compared students’ understanding of variables and sequencing using the Python and

Logo programming languages. Four misconceptions (M1, M2, M3, and M4) related to

variables were identified [5], [6].

The second study was carried out in the 2016/2017 school year with 98 fifth-grade

students across six classes. This study compared the results of an experimental group

and a control group. In the experimental group, visualization techniques were used to

introduce the basic programming constructs of sequencing and variables. Based on the

results of the first study, the test was expanded to include 13 tasks related to variables.

In addition to the four previously identified misconceptions, three new misconceptions

(M5, M6, and M7) were found. We also observed that while misconceptions M2 and

M4 remained consistent in frequency, the occurrence of M1 and M3 was halved through

minor instructional interventions, where teachers paid special attention to addressing

these misconceptions during lectures [7].

The next two studies focused on the transition from block-based to text-based pro-

gramming languages. For these studies, we developed a new instrument that extended

the previous one by including tasks related to conditionals and loops. The instrument

consisted of 20 multiple-choice questions (MCQs) and 9 open-ended tasks. Among the

 Contribution Title (shortened if too long) 3

MCQs, 8 targeted variables, 6 addressed conditionals (if-elif-else statements), and 6

focused on the use of for loops.

The third study was conducted during the 2017/2018 school year with 47 sixth-grade

students across 3 classes. The results confirmed the presence of five variable-related

misconceptions (M1–M5) identified in the first two studies, along with two misconcep-

tions related to conditionals (M8 and M9), and five related to loops (M10–M14) [8].

The fourth study was carried out in the 2019/2020 school year with 163 sixth-grade

students across 8 classes. In addition to confirming the previously identified miscon-

ceptions (M1–M14), three new misconceptions were detected: one related to sequenc-

ing (M15) and two related to conditionals (M16 and M17). Several tasks involving

loops also revealed variable-related misconceptions, such as M1*, M3*, and M13* [9].

Appendix A presents an overview of all detected misconceptions.

3 Conclusion

This paper summarizes four classroom-based studies exploring programming mis-

conceptions among novice elementary school students learning text-based program-

ming in Python. Across all studies, a total of 17 distinct misconceptions were identified,

primarily related to variables, sequencing, conditionals, and loops. The findings high-

light the importance of addressing specific misconceptions early in programming edu-

cation and designing assessments and teaching strategies that explicitly confront them.

Future work should focus on developing and evaluating teaching methods that can ef-

fectively mitigate these misconceptions in various learning environments.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to

the content of this article.

References

[1] E. Soloway and K. Ehrlich, ‘Empirical Studies of Programming Knowledge’,

IIEEE Trans. Software Eng., vol. SE-10, no. 5, pp. 595–609, Sep. 1984, doi:

10.1109/TSE.1984.5010283.

[2] P. Bayman and R. E. Mayer, ‘A diagnosis of beginning programmers’ misconcep-

tions of BASIC programming statements’, Communications of the ACM, vol. 26,

no. 9, pp. 677–679, Sep. 1983, doi: http://doi.acm.org/10.1145/358172.358408.

[3] R. T. Putnam, D. Sleeman, J. A. Baxter, and L. K. Kuspa, ‘A Summary of Mis-

conceptions of High School Basic Programmers’, Journal of Educational Compu-

ting Research, vol. 2, no. 4, pp. 459–472, Nov. 1986, doi: 10.2190/FGN9-DJ2F-

86V8-3FAU.

[4] B. Du Boulay, ‘Some Difficulties of Learning to Program’, Journal of Educational

Computing Research, vol. 2, no. 1, pp. 57–73, Feb. 1986, doi: 10.2190/3LFX-

9RRF-67T8-UVK9.

4 F. Author and S. Author

[5] M. Mladenović, Ž. Žanko, and I. Boljat, ‘Programming Misconceptions at the K-

12 Level’, in Encyclopedia of Education and Information Technologies, A.

Tatnall, Ed., Cham: Springer International Publishing, 2019, pp. 1–13. doi:

10.1007/978-3-319-60013-0_234-1.

[6] Ž. Žanko, M. Mladenović, and I. Boljat, ‘Misconceptions about variables at the K-

12 level’, Education and Information Technologies, vol. 24, no. 2, pp. 1251–1268,

Oct. 2019, doi: 10.1007/s10639-018-9824-1.

[7] Ž. Žanko, M. Mladenović, and D. Krpan, ‘Analysis of school students’ miscon-

ceptions about basic programming concepts’, Computer Assisted Learning, vol.

38, no. 3, pp. 719–730, Jun. 2022, doi: 10.1111/jcal.12643.

[8] Ž. Žanko, M. Mladenović, and D. Krpan, ‘Mediated transfer: impact on program-

ming misconceptions’, J. Comput. Educ., vol. 10, no. 1, pp. 1–26, Mar. 2023, doi:

10.1007/s40692-022-00225-z.

[9] M. Mladenović, Ž. Žanko, and G. Zaharija, ‘From Blocks to Text: Bridging Pro-

gramming Misconceptions’, Journal of Educational Computing Research, vol. 0,

no. 0, p. 07356331241240047, 2024, doi: 10.1177/07356331241240047.

A Appendix

Misconception Program-

ming

Concept

Example in Python Explanation

M1:

Assigning expression variables in-

stead of a calculated value

Variables a = a + 1 Students believe that the varia-

ble contains the unevaluated ex-

pression as a string (a + 1).

M1*:

Same as M1 in the loop

Variables,

Loop

for i in range(0, 6):

 print(i + 1)
Students believe the expression

(i + 1) will be printed as a string

six times.

M2:

Believing a variable stores the sum

of all its previously assigned values

Variables a = 100

a = 20
Students think the variable

stores the sum of all its assigned

values (i.e., 120).

M3:

Using the symbolic name of a vari-

able instead of its value

Variables a = 100

print(a)
Students expect the name of the

variable a to be printed, not its

value.

M3*:

Same as M3 in the loop

Variables,

Loop

for i in range(0, 4):

 add = i

print(add)

Students believe the variable

name (add) will be printed in-

stead of its value (3).

M4:

Using the first (or previous) value

assigned to a variable

Variables a = 100

a = 20
Students believe the variable a

still holds the first value (100).

M5:

Data type confusion

Variables a = 100

print('a')
Students believe the variable a

contains the numeric value 100,

although the letter 'a' is printed.

M5*:

Same as M5 in the loop

Variables,

Loop

for i in range(0, 3):

 print('i+1')
Students believe that (i+1) will

be evaluated and printed.

 Contribution Title (shortened if too long) 5

M6:

Expecting that variables will be

printed in assignment values order

Variables y = 200

x = 1

print(x, y)

Students expect values to be

printed in the order of assign-

ment (200 1), rather than in the

order specified in the print state-

ment (1, 200).

M7:

Incorrect variable swap

Variables a = 20

b = 100

a = b

b = a

print(a, b)

Students believe the values of a

and b have been swapped (100

20).

M8:

Expecting the input value to be

printed in a single-selection if state-

ment

Conditionals t = int(input())

if t >= 20:

 print('Not cold!')

Students believe that the input

value of the variable t will be

printed, regardless of whether

the condition is true or false, in a

single-selection if statement (no

else branch).

M9:

Incorrect interpretation of a bound-

ary condition

Conditionals s = int(input())

if s < 128:

 print('I cannot see!')

else:

 print('I see!')

Students believe the condition is

true when the boundary value

(128) is entered.

M10:

Including the final value in the loop

range

Loop for i in range(0, 6): Students believe the loop ends

with the value 6.

M11:

Loop starts at 1

Loop for i in range(0, 6): Students believe the loop starts

at 1.

M12:

Ignoring the repetition in a for loop

Loop for i in range(0, 6):

 print('+')
Students believe the string will

be printed only once.

M13:

Variable name affects its value

Variables,

Loop

add = 0

for i in range(0, 6):

 add = i

Students believe the variable

add stores the final value of the

loop range (6).

M14:

Ignoring the summing in the loop

Loop for i in range(0, 6):

 add = add + i
Students believe the variable

add contains the loop range

value (6), ignoring the accumu-

lation of the values within the

loop.

M15:

Reversing execution order of state-

ments

Sequence b = 0

a = b + 100

b = 100

print(a)

Students believe the final value

of b (100) is used when calculat-

ing a, leading them to expect the

result to be 200.

M16:

Misinterpreting the condition value

Conditionals t = 30

if t >= 20:

 print('Not cold!')

Students believe the condition is

false even when it is true, lead-

ing them to expect no output.

M17:

Ignoring the else branch

Conditionals s = int(input())

if s < 128:

 print('I cannot see')

else:

 print('I see!')

Students believe that if the con-

dition is false, nothing will be

printed.

