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With this paper, we conceptualise fundamental quantum
computing concepts, grounded in a review of the relevant
scientific literature. Based on this foundation, a set of
conceptual models is proposed, which may serve to
support students in constructing coherent and
scientifically grounded mental models of quantum
computing phenomena.

QUESTION

Which conceptual models should learners develop in the
context of the quantum computing concepts of

METHOD

A normative literature-based approach was applied to
derive mental and conceptual models for teaching
quantum computing. Relevant publications from
computing education, physics education, and quantum

(i) quantum bit (qubit) and

(ii) quantum entanglement?
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From these sources, conceptually sound models were
extracted and evaluated regarding their potential to
support student understanding.

The Long-dlstance Effect Model analogy of identical twins separated at birth

introduces entanglement who remain inexplicably linked. While such

through intuitive metaphors, analogies can help learners grasp the non-local

suchas character of entangled systems, they also carry

the the risk of reinforcing scientifically inaccurate

notions — particularly the misconception that

information is transmitted faster than light. For

this reason, they should be carefully

contextualized within the limits of quantum
theory.

The PI’Obablllty Model frames the qubit
not as a static entity but as a probabilistic system
governed by quantum mechanical rules. In this
view, superposition is understood as a probability
distribution over the two basis states |0) and |1),
akin to a continuous Bernoulli trial. Analogies such
as the quantum die or the quantum
penny flip can make this notion
more tangible for students,
emphasizing the fundamentally
probabilistic nature of quantum
measurement outcomes.

The Coupllng Model presents
entanglement as a mathematical correlation
between qubits that cannot be described by
independent states. This non-separability is
essential to understanding quantum systems and
forms the formal
basis for
entangled states.

The Information Model conceptualizes the
qubit from a computational perspective. In analogy to
classical bits, qubits are seen as discrete carriers of
information, though governed by different principles.
This model highlights the informational constraints of
quantum systems, such as the no-cloning theorem and
the no-communication theorem, which must be

addressed explicitly to avoid intuitive but incorrect assumptions about
the behavior of quantum information.

Quantum bi

The Unawareness Model addresses the
widespread misconception that entangled qubits
somehow “know” or “communicate” with each
other upon measurement. Instead, it clarifies that
correlations between measurement outcomes
arise from the shared entangled state and not from
any kind of causal interaction. This model is crucial
for preventing the anthropomorphization of
quantum systems and for fostering a correct ?”
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